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Fission-Induced Damage

Sputtering

• Fission event: 2 fragments,
E∼100 MeV, A∼100

• Fast, heavy charged particles →
ejection of atoms

• Damage to material surface

235U fission fragments
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Not well understood

• Underlying mechanism?

• Sputtered atoms per fission
event?

• Damage to the material surface?

• Competing models?

• Quality of surface (oxide layer)?

• Sputtering from “deep” fissions
(∼10 µm)?

Aging of Nuclear Materials

• Reactor fuel rods

• Satellites: thin film on batteries

• Stockpile stewardship



Ultracold Neutrons

Class Energy Source
Fast > 1 MeV Fission reactions / Spallation
Slow eV – keV Moderation

Thermal 0.025 ev Thermal equilibrium
Cold µeV – meV Cold moderation

Ultracold ≤ 300 neV Downscattering

How cold is Ultracold?

• Temperature < 4 mK

• Velocity < 8 m/s

• Usain Bolt ∼ 12 m/s

UCN can be bottled

• Gravitational (V = mgh): 100 neV / meter

• Magnetic (V = −~µ · ~B): 60 neV / Tesla

• Material
(
V = 2π~2Nb

m

) 
58Ni : 335 neV
DLC : 250 neV
BeO : 250 neV

Cu : 170 neV



UCN-Induced Fission

Very high cross section: σ ∼ 1
v

Neutron Energy (eV)
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Cross Section (barns)
UCN Energy 200 neV 300 neV 400 neV
235U(n,tot) 2.64× 105 2.16× 105 1.87× 105

238U(n,tot) 1.17× 103 9.57× 102 8.29× 102

Finely tune depth into material

UCN range in foil (µm)
Comp. % 235U 200 neV 300 neV 400 neV)
DU 0.2% 118 144 191
NatU 0.7% 66 81 101
SEU 2% 31 38 45
LEU 5% 13 17 20
HEU 20% 4 4.5 5

100% 0.8 0.9 1



UCN Source at LANSCE

6T Magnet

Gate
Valve

Ion Chamber
UCN
Source UCN Monitor

UCN Source1

• UCN Source: 800 MeV proton beam + Tungsten target = CN

• CN downscatter in SD2 crystal = UCN

• UCN Monitor = Normalize for fluctuations in UCN production

Detection

• Gate valve permits UCN entry to experiment

• 6 T magnet = near 100% polarization

• UCN drop through Al window into ion chamber

1Rev. Sci. Instrum. 84 013304 (2013)



UCN Rate Normalization

UCN Beam Monitor2

• 3He filled multi-wire proportional chamber

• 3He + n → p (573 keV) + t (191 keV)

• 50% transmission through window into detector; 80% efficient

Baseline UCN Rates3

• Boron-coated cylindrical ion
chamber, 1 barr argon

• 10B + n → α + 7Li

• Near 100% efficient for UCN
entering chamber

• Rate: 4.5kHz (for 125 Hz
beam monitor rate)
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2Nucl. Instrum. Meth. Phys. Res. A 599 248 (2009)
3Nucl. Instrum. Meth. Phys. Res. A 691 109 (2012)



Proof of Concept: Fission Rate

Experiment

• Identical experimental setup

• Cylindrical ion chamber with boron
coating removed

• Effect of UCN bottling?

• 200 mbarr argon: α’s range out

235U

• 2.2 cm diameter, 1 mm thick disk of
HEU (> 80% 235U)

• Rate: (1.90± 0.02)× 10−2 fission/UCN

238U

• 2.25 cm diameter, 1 mm thick disk of
Depleted Uranium (∼ 0.2% 235U)

• Rate: (1.3± 0.8)× 10−4 fission/UCN
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Neutron Capture Gammas

HPGe detector

• Calibration: 60Co and 137Cs gamma
sources

• Goal: tag gamma, look for fission

Observed Spectra

• Empty chamber with/without UCN:
additional 480 keV line from residual
Boron coating

• Decay gammas from 235U/238U
observed; some additional lines

• No additional gamma lines with UCN?
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Neutron Spin Dependence

Neutron Polarization

• 6 T Magnet: near 100% UCN polarization

• Neutron spin aligned with field

Experiment

• Neodymium magnets installed on chamber: ~B
field normal and parallel to surface

• ∼200G field normal to surface:
(1.92± 0.02)× 10−2 fission/UCN

• ∼50G field parallel to surface:
(1.94± 0.02)× 10−2 fission/UCN

• No magnets: (1.90± 0.02)× 10−2 fission/UCN

B

B



Sputtering

Evidence of UCN-induced sputtering?

• Installed 235U for ∼20 minutes

• Exposed to UCN for ∼10 minutes

• Removed sample: small signal still observed!

• α rate = 2.63±0.07 Hz (∼ 1017 atoms)

Check: No UCN exposure

• 235U installed on removable copper plate: reduce
chance of contamination

• Installed for ∼15 minutes, not exposed to UCN

• Removed copper plate with sample

• α rate = 0.78±0.04 Hz (∼ 1016 atoms)

• Inconclusive: contamination? α-induced
sputtering? chamber pumping/pressurizing?

anode

removable
Cu plate

anode



Characterize Ejected Material

Important questions:

• How much comes off?

• Size distribution vs. depth/surface quality?

• Kinetics vs. depth?



Summary

First observation of UCN-induced fission

• Previously no fission data at these energies

• Determine relative cross-sections (e.g. vanadium sample)

Next: Confirm UCN-induced sputtering

• Sputtered rate as function of exposure time

• Better sample mounting: eliminate possibility of contamination

• Electropolish sample: clean, well-understood surface

Program Goals

• Characterize sputtered ejecta from various actinides

• Control fission depth via UCN energy: gravity/magnetic potentials

• Understand effect of depth and surface quality

• Examine different alloys, material layers


